New Aspects of Mitochondrial Uncoupling Proteins (UCPs) and Their Roles in Tumorigenesis

نویسندگان

  • Delira Robbins
  • Yunfeng Zhao
چکیده

Uncoupling proteins (UCPs) belong to a family of mitochondrial carrier proteins that are present in the mitochondrial inner membrane. UCP1 was first identified followed by its two homologs, UCP2 and UCP3. The physiological functions of UCP include lowering mitochondrial membrane potential and dissipating metabolic energy as heat. However, UCP can be dysregulated and may contribute to the pathogenesis of metabolic disorders and obesity. Recent studies suggest that UCP also plays a role in neurodegenerative diseases and atherosclerosis. In addition, the widely expressed UCP, UCP2, has been shown to be upregulated in a number of aggressive human cancers. One mechanism of UCP2 upregulation in these cancers is due to oxidative stress, and elevated UCP2 in turn reduces oxidative stress, which provides a growth advantage for these cancers. Nevertheless, new studies suggest UCP2 may interact with oncogenes and tumor suppressor genes, providing a potential new mechanism of how UCP2 contributes to cancer development. In this review, the evidence supporting the role of UCPs in diseases other than diabetes and obesity, the reports on how UCP is regulated in cancer cells, and how UCP may regulate p53 will be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system

Mitochondrial inner membrane uncoupling proteins (UCPs) facilitate transmembrane (TM) proton flux and consequently reduce the membrane potential and ATP production. It has been proposed that the three neuronal human UCPs (UCP2, UCP4 and UCP5) in the central nervous system (CNS) play significant roles in reducing cellular oxidative stress. However, the structure and ion transport mechanism of th...

متن کامل

Decreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart

Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...

متن کامل

Mitochondrial UCPs: new insights into regulation and impact.

Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins sustaining an inducible proton conductance. They weaken the proton electrochemical gradient built up by the mitochondrial respiratory chain. Brown fat UCP1 sustains a free fatty acid (FA)-induced purine nucleotide (PN)-inhibited proton conductance. Inhibition of the proton conductance by PN has been considered as a diagnostic ...

متن کامل

Genomic structure and regulation of mitochondrial uncoupling protein genes in mammals and plants.

Uncoupling mitochondrial proteins (UCPs) belong to a discrete family within the mitochondrial anion carrier superfamily. Several uncoupling protein types have been found in mitochondria from mammals and plants, as well as in fishes, fungi, and protozoa. Mammalian UCPs and plant uncoupling proteins (PUMPs) form five distinct subfamilies. Only subfamily III contains both plant and animal uncoupli...

متن کامل

Alteration in cardiac uncoupling proteins and eNOS gene expression following high-intensity interval training in favor of increasing mechanical efficiency

Objective(s):High-intensity interval training (HIIT) increases energy expenditure and mechanical energy efficiency. Although both uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS) affect the mechanical efficiency and antioxidant capacity, their effects are inverse. The aim of this study was to determine whether the alterations of cardiac UCP2, UCP3, and eNOS mRNA expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2011